
MATHEMATICS OF COMPUTATION 
Volume 69, Number 230, Pages 609-628 
S 0025-5718(99)01156-4 
Article electronically published on May 20, 1999 

STABILITY OF RUNGE-KUTTA METHODS 
FOR QUASILINEAR PARABOLIC PROBLEMS 

C. GONZALEZ AND C. PALENCIA 

ABSTRACT. We consider a quasilinear parabolic problem 

u'(t) = Q(u(t))u(t), u(to) = uo E X, 
where Q(w): P C X -* X, w E W C X, is a family of sectorial operators in a 
Banach space X with fixed domain D. This problem is discretized in time by 
means of a strongly A(O)-stable, 0 < 0 < 7r/2, Runge-Kutta method. We prove 
that the resulting discretization is stable, under some natural assumptions on 
the dependence of Q(w) with respect to w. Our results are useful for studying 
in LP norms, 1 < p < +oo, many problems arising in applications. Some 
auxiliary results for time-dependent parabolic problems are also provided. 

1. INTRODUCTION 

The present paper is devoted to the study of the stability and convergence of 
semidiscretizations in time, based on Runge-Kutta methods, of quasilinear para- 
bolic problems. We believe that the issues discussed in this paper are a decisive 
step towards a rigorous analysis of the fully discrete (i.e. discrete in space and 
time) methods. 

Quasilinear parabolic problems arise in the study of diffusion phenomena with 
state-dependent diffusivity. They also appear in the equations of fluids in porous 
media, the study of polymers, models for cartilages (see e.g. [5, 8, 10, 11] and the 
references therein), etc. 

The continuous problem is considered in the abstract setting of Banach spaces. 
This point of view is not only general but also very convenient, since the proofs 
rely on two clear and simple abstract hypotheses. Let (X, 1l 11) be a complex 
Banach space, let W C X, and let D C X be a dense subspace of X. For each 
w E W, let Q(w): D C X -* X be a linear operator. We are interested in the 
semidiscretizations in time of the abstract quasilinear problem 

(1) f u'(t) = Q(u()U)u() t > to) 
I u(to) = uo ED. 

Thus, our attention is restricted to the simplest case for which the domains of the 
operators Q(w) are independent of w E W. The practical meaning of this limitation 
(see Section 6) is that only boundary conditions of Dirichlet type can be included 
within the scope of our study. However, by using the theory of extrapolation spaces 

Received by the editor March 12, 1997 and, in revised form, February 23, 1998 and June 9, 
1998. 

1991 Mathematics Subject Classification. Primary 65M12, 65M15, 65M20, 65L06, 65J10, 
65J15. 

(?)2000 American Mathematical Society 

609 



610 C. GONZALEZ AND C. PALENCIA 

(see [6]), it seems possible to reduce the study of quasilinear problems with variable 
domains to the case of fixed domains. The investigation of this possibility will be 
carried out elsewhere. 

Our hypotheses concerning problem (1) are standard. Roughly speaking, we will 
assume that (i) the "frozen" linear evolution problems u'(t) = Q(w)u(t), where 
w E W is fixed, are parabolic, and (ii) the dependence of Q(w) on w is Lipschitz in 
a suitable sense. Before we state our hypotheses, we introduce some notation. For 
each angle 0 E (0, 7r/2), we set 

So := {O} u { z E C : z , 0?, 1 arg(-z)} < 0 . 

The Banach space X is also denoted by Xo. The domain D is assumed to be 
endowed with a norm 11 H11 such that X1 := (D, 11 111) is a Banach space and 
such that X1 is continuously embedded in Xo. With no loss of generality, we will 
assume that llxll < llxlll for x E X1. For 0 < r1 < 1, X7, stands for the Calderon 
interpolation space [Xo, XI], (see e.g. [9, 25]). The norm in X7, is denoted by rI III. 
Notice that, for 0 < 7 < v < 1, we have IIxIK,, < llxllK for x E X,. Let us point out 
that the interpolation spaces obtained by means of the real interpolation method 
(see e.g. [25]) could be used instead. We wish to emphasize that only basic facts 
about interpolation theory will be required. 

Our hypotheses H1-2 concerning (1) are as follows. 
HI. There exist M > 1, wo E R and 0 E (0, 7r/2) such that, for any complex 

z ? wo + So and for any w e W, the resolvent (zI - Q(w)) : X -* X exists and 
satisfies 

(z -Q(w))> < M - 
z - wl 

As it is well known (see e.g.[22]), this assumption implies that for fixed w E W 
the semigroup etQ(w), t > 0, is analytic. It is this condition that renders the abstract 
problem (1) parabolic. 

H2. There exists ,u E [0, 1) such that W is an open subset of X,1, and there 
exists L > 0 such that the bound 

IIQ(w)x-Q(v)xll < Lllxlll llw-vII, 

holds for arbitrary v, w E W and x C X1. 
Fix w E W. Since Q(w): D C X - X is a closed operator, the space D endowed 

with the graph norm llxlls = llxll + IIQ(w)xll, x E D, is a Banach space. Therefore, 
the norm II I in X1 is equivalent to such a graph norm. It turns out that X1, and 
hence the intermediate Calder6n spaces X7,, 0 < r1 < 1, can be built up from any 
of the operators Q(w), w E W. However, due to the nonapplicability of Heinz's 
theorem, the domains of the fractional powers D((wol - Q(w))>) may depend on 
the point w E W. This is the reason why we use the Calder6n spaces. 

It is known that H1-2 guarantee the existence and uniqueness of the solution of 
the initial value problem (1) (see e.g. [3, 4, 23]). In [4] it is proved that (1) defines 
a semiflow inwf X,, for ,u < v < 1. Notice that the limiting value v = ,u is not 
covered by this result. 

Problem (1) is discretized in time by means of a Runge-Kutta method, defined 
by its Butcher array 

(2) (cT ) 
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where b = [b1,... ,b,]T E RS, c = [cl,... ,cS]T E Rs and A= [aij]ipj=i E RsXs. 

We assume that 0 < ci < 1 for 1 < i < s, and that A is invertible. Let us 
recall that the stability function of the method is the rational function r(z) = 
1 + bT(I _ zA)-le, where e = [1, ... ., l]T E RS and I is the identity matrix 
in RSXS. We define the method to be A(O)-stable, 0 < 0 < 7r/2, when (i) the 
spectrum of the matrix A is contained in the complement in C of the sector So, 
and (ii) tr(z)l < 1, for z E So. If in addition tr(oo)l < 1, then the method is 
called strongly A(O)-stable. In the sequel only strongly A(O)-stable methods will 
be considered. Though this excludes, among others, the Gaussian methods, there 
is a wide range of methods lying in the class of strongly A(0)-stable methods (see 
e.g. [15]). 

Let tn, 0 < n < N, be a finite sequence in R, with constant step-size h > 0. 
The method, applied to problem (1), starts with the value uo and produces the 
numerical approximations un to the values U(tn), 1 < n < N, by means of the 
recurrence 

S 

(3) un+1 = un + hbiQ(Un)Un, 0 < n < N-1, 
i=l1 

where, for 0 < n < N - 1, the intermediate stages Un E W are implicitly defined 
by the system 

S 

(4) ~~~Un =Un +h Eaij Q(Unj)Unj =,. s 
j=1 

For R > 0,0 < ? 7 < 1and v E X7, D,(v, R) stands for the closed ball in X7, 
centered at v and with radius R. In Lemma 2.2 it is proved that, assuming that 
uo E WnXL for some v E (,u, 1), there exist R and ho such that, for 0 < h < ho 
and v E D,(uo, 2R/3), the stage system 

(5) Vi = v + hEaijQ(VJ)VJ, i = 1,... ,s, 

j=1 

possesses a unique solution h(V) := [V1,V2, ... ,Vs] E D,1(v,R/3)5. Thus, for 
0 < h < ho, we can construct a non-linear operator JVh: D,(uo, 2R/3) -* X, in 
such a way that (3) is equivalent to 

(6) Un+l = Ah(un), 0 < n < N- 1, 

provided that un E D,(uo, 2R/3). Two important remarks are in order. First, 
notice that while v in (5) lies in the finer space X>, the vector of stages uh(v) lies 
in X,. Second, it is possible to see that 

(7) IIJVh(v) - vlL, = 0(h--') 

and that this estimate is sharp. Thus, if we start at uo and assume that we progress 
with (6) up to un, then (7) yields 

lUn - UOILV = 0(nh"-/) = 0(((tn-to)/hl-"+-). 

However, this does not guarantee that the terms in (6) remain in DL,(uo, 2R/3), 
when h -* 0+. This means that the applicability of the method for Nh = T, T > 0 
fixed, must be established by another approach. The possibility of this solvability 
for T > 0 fixed, even when source terms are incorporated into (6), is provided by the 
next theorem, which is the main contribution of the present paper. The continuous 
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dependence the initial data and the source terms is also considered. The inclusion 
of such source terms is required in studying the convergence of the method. 

Theorem 1.1. Assume that the quasilinear parabolic problem (1) satisfies condi- 
tions H1-2, for some M > 0, 0 E (0, 7r/2), L > 0 and ,u E [0,1). Assume also 
that the Runge-Kutta method given by (3) and (4) is strongly A (0)-stable. Let 
uo E WnXV/ for some v E (/1, 1), and fix S > O. Then there exist R > O, ho > 0, 
T > 0 and C > 0 such that for 0 < h < ho and for N = [T/h] the following results 
hold. 

(i) For each v E DL,(uo, R/3) and each finite sequence Tn, 1 < n < N, in DL,(O, S) 
the recurrence 

Vn+?I = Ah(Vn) + hTn+ 1 O<n<N-1; vo=v, 

is solvable in D,,(uo, R). 
(ii) Let v, v* E DL,(uo, R/3) and let Tn, Tn, 1 < n < N, be two finite sequences 

in DL,(0, S). Consider the two sequences vn, vn, 0 <_ n < N, in DL,(uo, R) defined 
by vo = v, v* = v* and 

Vn+I = JVh(Vn) + hTn+ 1 V*1 =f iAh(v*) + hTn+? v, < n < N-1. 

Then 
n 

fvn-l < ?C(h vl-vL +Z TJ-Tj lI). 

j=1 

Notice that, as in the result in [4] mentioned above for the continuous problem, 
the limiting value v = u is not covered by Theorem 1.1. 

We only know two references [7, 16] for the semidiscretization in time of abstract 
quasilinear parabolic problems. The functional setting in [16], given by the Lions- 
Gelfand triplets in Hilbert spaces, is more restrictive than ours. Notice that in a 
Hilbert space setting we can use Fourier transforms and energy methods, tools that 
are not valid in our general framework. In [16], only convergence is considered, not 
stability. 

As in the results in [4] for the continuous problem, the proof of Theorem 1.1 relies 
on a fix-point argument. However, the parallelism with the continuous problem is 
broken by the fact that the stage vectors in (5) are in a space different from that 
containing the nodal values of the numerical solution. This forces a tricky choice of 
the base space for the fix-point argument. The necessary estimates are consequences 
of some bounds for linear time-dependent parabolic problems. In addition to the 
stability results in [14] for these problems, we need some estimates that are provided 
in the final Section 7. 

Theorem 1.1 is of local nature, as expected in general for a nonlinear problem. 
Nevertheless, it is possible to trace the constants in Theorem 1.1. An important 
remark is that they do not depend on the Banach space X, but only on the Runge- 
Kutta method, on the constants in H1-2, and on the distance from uo to the 
boundary of W. It turns out that the constant C in Theorem 1.1.(ii) is of the form 

C = (9(Tm exp ((w0 + C*Llla)T) ) 

where m > 1, 0 < al < 1 and C* > 0 are independent of T. In view of this 
estimate we envisage the existence of some global result for T = +oo, at least for 
asymptotically stable cases, when w0 < 0 and L is small einough. This interesting 
issue will be considered elsewhere. 
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Section 2 is devoted to two auxiliary lemmas. The proof of the main result, 
Theorem 1.1, is postponed to Section 3. Convergence is considered in Section 4. 
In Section 5 we give the extension to time-dependent problems and to problems 
with semilinear terms. In Section 6 we show the applicability of our results to some 
basic examples. 

We will use the following notation. The product spaces X7, m an integer > 1 
and 0 < r1 < 1, are endowed with the maximum norm component-wise. The norm 
in Xm7 is also denoted by 1 , Given 1, m integers > l and 6, r1 E [0,1], the 
operator norm correspoding to a bounded operator F: (Xl, t 11t16) -(Xm71 t) - 1) 
is denoted by IIFII671. Any matrix M E Clxm is identified with the operator 
M 0 I: X7 j * Xl, for 0 < ij < 1. The letter a stands for an upper bound on 
the norms of the operators defined by the matrices bT, c, A and A-1 with respect 
to any pair of fractional spaces. Finally, given a family Fn, 1 < n < N, of linear 
operators acting in some common space, we set 

n 
JJ Fj=Fn Fn-I Fm+I 

j=m+l 

for 0 < m < n < N, and Hn ?m+I Fj = I for 0 < n < m < N. 

2. SOME LEMMAS 

In this section we study the local solvability of the stage system (5) and give 
some basic estimates. 

For V = [V1, ... , Vs]T W, we take B(V): X1s C X' -* X to be the operator 
defined by diag(Q(V1),... , Q(VS)). 

Lemma 2.1. Let uo E W C X11 . There exist R > 0, h1 > 0 and K1 > 0 such 
that DI,(uo, R) C W and, for 0 < h < h1 and V E DI,(uo, R)S C WS, the operator 
I - hAB(V): Xjs c Xs -* X is boundedly invertible and for 0 < < 6 < 1 

(8) (| (- hAB (V)) ||1S< KIV7-61 

(9) (I -hAB(V)>) I 1-1 6, < K- h6-q 

and 
(10) 

(f-hAB(V2)) -(I - hAB(VI)) 1 6,,q < K1h6` IIV2 -V . 

Proof. Let Bo: Xjs c X X' be the operator given by 

Bo =diag(Q(uo),... ,Q(uo)). 

As in the proof of Theorem 4.1 of [13], due to the fact that the diagonal elements of 
Bo are all equal to Q(uo), we can see that there exist h1 > 0 and K > 0 such that, 
for 0 < h < h1, the operator I - hABo: X1s c X' -- X' is boundedly invertible 
and 

(11) (1 (- hABo) ||r< Kh?7-51 O < 71 < <1 

Select R1 > 0 with DI, (uo,RI) c W. For V E DI,(uo, RI)s and 0 < h < hi, we 
define a new operator A(V, h): Xs c Xs -* Xs by 

A (V, h) hA (B(V) - Bo) (I- hABo) 
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Take R = min{RI, 1/(2aLK)} and fix V E DI,(uo, R)s. For 0 <r1 < 1, from (11) 
and H2, we get 

tLA(V,h)tK77o < hfljAl+ooI B(V) -Bo 1o - hAB> 44Bo)1 
(12) < aLtIV-e ? uotljtKhn 

< hV'/2. 

By the estimate (12), with r1 = 0, we have 

(13) A(V, h) 1oo < 1/2. 

Thus, noticing that 

I- hAB(V) = f- hABo - hA(B(V) - Bo) = (I - A(V, h)) (I - hABo), 

we can establish the existence of the inverse of I - hAB(V), for V E D1t(uo, R)S 
by means of the Neumann series, which yields 

00 

(14) (I - hAB(V)) 1 = (I hABo)l Ak(V, h). 
k=0 

Fix 0 < r1 < 6 < 1. By taking norms in (14) and using (11), (12) and (13), we 
deduce that 

11 (f-hA4B(V)) 1II,, , < 11 (I -hbABo) l11B,,5+11 (f -hABo) lllo,,5 

X ( ||Ak-l (V,h) lloo) llA(V, h) ll--o 

< 2Kh-"6. 

This proves (8). 

Next we prove (9). As we mentioned in the introduction, because of H2, the 
norm II * III is equivalent to the graph norm of any operator Q(w), w E W. In fact, 
it is clear that there exists b > 0 such that 

(15) IIB(V)IIl,o < b, V E D, (uo,R)s. 

Fix 0 < h < ho, V E D1(uo, R)s and 0 < r, < 6 < 1. By (8), 

(16) ||(I-hAB(V))1_-I f ?<1 + ||(f-hAB(V))1 <1+K. 
Moreover, the identity 

(f- hAB(V))1-1 = hAB(V) (f- hAB(V))1 
holds. Hence, using (8) and (15) again, we conclude that 

II(1-hAB(V)) 1-- |,5 < hIlAll oo lB(V) -llo l(I-hAB(V))l1 ,1 
< abKh6. 

Now (9) is obtained by interpolating between the last estimate and (16). 
It remains to prove (10). Given VI, V2 D D,(uo,R)s, we have 

(I-hhAB(V2)) -(f-hAB(VI )) 

- (I- hAB(V2)) 1hA(B(V2) - B(V1)) (I - hAB(VI)) 
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Hence, by (8) and H2, 

(I f-hAB(V2)) 1 - (I-hAB(v)1 (V) 

* 11 ( - hAB(V2))- II|ohIIAIIo,o 

x JIB(V2) -B(Vj)|lilo+ll (f- hAB(Vi))- II.,, 
* aK2Lh6-711 V2- VI C1 

Lemma 2.2. Let p/ < A < 1 and uo E xAfnW. There exist ho > 0, R > 0 
and K > 0 such that Di,(uo,R) C W and such that, for 0 < h < ho and v C 
DA(uo, 2R/3), the stage system 

(17) V = e 0 v + hAB(V)V 

possesses a unique solution, denoted by (Th(V) V, in D,1(v, R/3)S flXi, More- 
over, 

(18) ll0h(V*) - oh(V)lI,jt ? K||v*- VjjA, v, v* E DA(Uo, 2R/3). 

Proof. Let R > 0, K1 > 0 and h1 > 0 be the radius, constant and threshold 
provided by Lemma 2.1 for uo. Fix v E DA(uo, 2R/3) and 0 < h < hi. According 
to Lemma 2.1, for V E D,1(v,R/3)s c D, (uo,R)s the inverse (I- hAB(V)) 
exists. Therefore, (17) is equivalent to the system 

V = (I - hAB(V)) 1(e 0 v), V E D, (vIR/3)S. 

Let Fh,,: D,, (v, R/3)s X' be the operator defined by 

Fh,v (V) = (f-hAB(V)) (e 0 v), V E XI . 

Because of the above considerations, it turns out that the solutions V E D,1(v, R/3)S 
of system (17) are the fixed points of Fh,v and conversely. Next we are going to see 
that, possibly after a reduction of h1, Fh,v maps D, (v, R/3)S to D,1(v, R/3)S and 
that Fh,v is a contraction on D,1(v, R/3)s, with respect to the metric induced by 
X,. Then, by the Banach fixed-point theorem, we will conclude that (17) possesses 
a unique solution in Di, (v, R/3)s. 

For V E D,, (v, R/3)s we have 

Fh,v(V) -e v = ( (I-hhAB(V)) -I)(e?v), 

so that, by (9), we get 

Fh,v(V)-e0vII, < ? (fJ-hAB(V)) -fl e?-,, v AeoVl|A 

< KlhA>-,(IIuoIIA + 2R/3). 

Select h2 > 0 such that K1htA-- (IIuo A + 2R/3) < R/3. It is clear now that, for 
O < h < min{hi,h2}, Fh,v maps D,1(v,R/3)S to itself. Moreover, for VI, V2 E 
D,, (v, R/3)s we have 

Fh,v (V2) - Fh,v (VI) = - hAB(V2)) (I - hAB(VI)) ) (e ? v). 

Then, by (10), 

IlFh,v(V2 )-Fh,v(V1) I | 
? ||(f7-hAB(V2))>1-7_(-hAB(Vl))Y IA || le0v A 

K Kl(tIuotIA+2R/3)h 
I 

IV2V it. 
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Take h3 > 0 such that Kl(IIuoI IA + 2R/3)hA-7 < 1/2 and set ho = min{hl, h2, h3}. 

Then, for 0 < h < ho, the operator Fh,, is a contraction on D,,(v, R/3)s. 
Finally, let v, v* E DA(uo, 2R/3) and set V* = Oh(V*) and V = uh(v). For 

O < h < ho, we have the identity 

V - V = Fh,v* (V*) - Fh,v(V) 

= (1-hAB(V*))>(eov*)-(f-hAB(V))>-(eov) 

= (17-hAB(V*))Y(e?v*-e?v) 

+ ((1-hAB(V*)) - (i-hAB(V))1)(eov). 

On the one hand, by (8), we get 

11 (If- hAB(V*)) '(e 0 v* -e 0 v) ||,, < K,11Iv*- vll,,, 

and, on the other hand, (10) yields 

(1(-hAB(V*))y - (I-hAB(V))-1) (ev) 

< KlhA-pjjV*- VllAllVIA 

< KlhA-p(jju0IIA + 2R/3) IV* - VKli 
-2 11V* - VVKA. 

Therefore, we have proved that 

V*-VIIt < KK1Hv*- vllK + 2V* -VIV 
and hence we obtain 

t10h(V*)-Jh(V)Klt =H|V*-VlK? <2Klv*-v||?<2KlV*-VItA- O 

3. PROOF OF THE MAIN RESULT 

Choose A > O and p > O such that ,u < A < v and p < v-A. Let us apply 
Lemma 2.2 to uo E WflXA. Let R > 0, K and ho be the radius, constant and 
threshold provided by that lemma. Fix L* > 0 and T> 0 satisfying L*TP < R/3. 
For 0 < h < ho we set N = [T/h], and we define 

H =Vv = mfVNO E DL (uo, R/3) X XN : 1Vnm-Vm lA < L*(tn-tm)p, 

0 < m < n < N 

and 

E=Dv(O,S)N = {T{ = Th}n l E Xv: 1Tnll, < SI 1 < n < N}. 

Let v N { E H. Due to our choice of L* and T, for 0 < n < N we have 

liVn-UOIIA < IVn -VOIJA + IVO-U0111, < L*TP + R/3 < 2R/3, 

and hence vn E DA(uo, 2R/3). Thus, the stage vectors Vn = uh(vn) E D, (vn, R/3)S 
c D, (uo, R)S, 0 < n < N, are well defined. Therefore, it makes sense to consider 
the linear operators in X, depending on v, given by 

Pn(v) = I + hbTB(Vn_- ) (I - hAB(Vn_- )) '(e 0 I), 1 < n < N, 

and by 
n 

Pn,m(V) ]J pj(V), O < m < n < N. 
j=m+l 
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With this notation we are going to define a non-linear operator F H x E - 

Xv x XN. For v E H and r = {-T'IN 1 E E, we set 

F(vg,r) = {fn(V vr)jNn=O v 

where fo(v,'r) = vo and, for 1 < n < N, 
n 

fn (v) r) = Pn, o(v)vo + h Z Pnj (v)T j. 
j=1 

Notice that, after Lemma 2.1, the operator F takes values in X1+N. 
The proof of the present theorem is based on the following remark. Let v 

{vn}nN=OE H, 'r - IN 1 E E, and assume that 

(19) v = F(v, r). 

Then, by the discrete variation-of-constants formula, it is clear that the recurrence 

Vn+1 = zfh(Vn) + Tn+1, 0 < n < N- 1i 

is satisfied. In conclusion, for 0 < h < ho the Runge-Kutta method, starting from 
vo and with sources r, is applicable up to time T. For vo E D,(uo, R/3), let Hvo 
be the subset of H of those elements whose first component is vo. The idea of 
the proof is to fix vo E D,(uo, R/3) and r E E, and then to solve the fixed-point 
equation (19) in Hvo. The proofs of the existence of the fixed point in (19) and of 
its continuous dependence on vo and -r are both based on the estimates (20) and 
(21) below. The proofs of (20) and (21) require the results in Section 7 and are 
given at the end of the present section. Thus, assume that there exist continuous 
mappings Ck: [0,-+Xo) -- (0,-+Xo), 1 < k < 3, such that, for 0 < m < n < N, 
v E H and -r E E 

(20) fn(vV-r) - fm(v,T)IA < Ci(T)(T APlivoi0 + ST1-P)(tn-tm) I 

and for 0 < r < v 

llfn(v , 
- fn (v,r) II, 

n 

?C2(T) lv*-vI X(T-1IIv*I+hZ + h T 
(21) j=1 

n 

?C3(T)(Iv*-v+o +h + h 1 -til) 
j=1 

Reducing T if necessary, in the rest of the proof we can suppose that 

C0(T)(TV`1-P(IIuoII> + R/3) + ST1-P) < L* 

and 

C2 (T) (T'- uo IIU + R/3) + TS) < 1/2. 

Fix vo E D,(uo, R/3) and r E E. Notice that Hvo is a complete metric space 
with respect to the distance induced by the one in XN. By (20), we deduce that 
the restriction mapping v -- F(v,-r) maps Hvo into Hvo. Moreover, by (21), 
this restriction mapping contracts the distance in Hvo. Therefore, by the Banach 
contraction principle, this mapping possesses a unique fixed point v {vn} l0 E 
Hvo. As we mentioned before, this proves part (i) of the theorem. 
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Next we prove the stability estimate (ii). It is enough to show (ii) for n N. 
Thus, assume that v*, v E H and r*, r E H satisfy 

v*-F(v*,,r*) v = F(v,r) 

FRom (21), with r A, and the choice of T we deduce that 

v*-v lvI = IIF(v*,7r*)-F(v,7r)IA 
N 

< (1/2)llv*-vl l+C3(T)( lv*-voll0v+hEZ llT*-Tijll ,), 
j=1 

which yields 
N 

v*-v ?<2C3(T)(Ivo*-voIIb + hE 11 j*-millb) 
j=1 

Using the last estimate in (21) again, but now with ry = v, we get 

iv-vvll b, - F(v*,7r*)-F(v,7) 
N 

? C2*(T) lv*-vl l+C3(T)(lv*-Vov + +hZ ll<r*-T-rllh ) 
j=1 

N 

? C3(T)(2C2*(T)+1)( lvO*-vo lv+hZ EllTi*-9Tj v)I 
j=l 

where C2* (T) = C2 (T) (lIuo I + R/3 + TS). This is precisely (ii) for n N. 
It remains to prove the basic estimates (20) and (21). Let v = Vn IN 0 E 

H, and consider the associated sequence of internal stages {Vn}s1 = gh(Vn) E 
D (vn, R/3)s, 0 < n < N. Let q?v : [to, to + T] -- Di, (uo R) c W c X,, be the 
unique piecewise linear interpolant with nodal values 

(Pv (tn + ci h) = Vn', O< n <N, 1 <i <s. 
It is clear that, due to the Lemma 2.2, there exists a constant K > 0 satisfying 

(22) 11(pv(t) -Y(v(s)II[z < KL* It-sIP S, t E [to,to + T], v E H. 

For v E H, let Av(t): X1 c X - X be the family of linear operators 

Av(t) = Q(pov(t)), to < to + T. 

Notice that, because of Hi and (22), we have for x E X, and t, s E [to, to + T] 

II(Av(t) - Av(s))xII < Ljpfv(t) - Pv(s)IIK Ix I1 < KLL*t - sIPlxIll. 
Furthermore, it is plain that the operators Pn,m (v), 0 < m < n < N, are the 
discrete transition operators corresponding to the Runge-Kutta method applied to 
the non-autonomous problem 

U'(t) = Av (t) u(t)) 
Therefore, by Theorem 7.1 we get (20). Finally, let us prove (21). Let v, v* E H. 
By Lemma 2.2, we have 

pov* (t) - pv(t) Il,u < KL* IIv* -v, 

so that 

|| (Av*(t) - Av(t))x ?| < LI (pv*(t) - (pv(t)I lIxIcc1 < KLL*lIv* - vIIAlIlIlI, 
and (21) is readily obtained from Theorem 7.2 with e = KLL*Ilv* - vI. A 
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4. CONVERGENCE 

As we will see, the stability result in Theorem 1.1 is well suited to the analysis of 
the convergence. The order of convergence of the method turns out to be essentially 
the so-called stage order q*, rather than the classical order p. Some extra fractional 
order may be present, depending on the norm in which the error is measured. 

Let us recall that the stage order q* of the Runge-Kutta method is defined as 
the maximum integer q* > 1 with the property that, for 1 < i < s, the quadrature 
formula in [0,1] with nodes cj and weights aij, 1 < j < s is of order q*. We set 
q= min{q*,p} (in practice q q* for all the methods). 

Let u: J -- W be a solution of (1) defined on a compact interval J = [to, to +T], 
to ER, T> 0. We suppose that u E C(J,Xi)nCp+1(J,X*), where , < v* < 1. 
The error can be measured in the norms of any X>, with ,t < v < v*. In the sequel 
we fix v E (gt, v*] and set ,B-v*-v > 0 and q = min{q + ,,p}. As we will show, 
the order of convergence, in the norm of X>, is q. 

As a first step we study the local error. Choose R > 0 and ho > 0 in such a 
way that Lemmas 2.1 and 2.2 remains valid uniformly along the values u(t), t E J, 
for 0 < h < ho. We set Jh = [to,to + T - h], for 0 < h < ho. After reducing 
ho if necessary, we can also suppose that Ilu(t + h) - u(t)IlI1 < R, for 0 < h < ho 
and t E Jh. Thus, for 0 < h < ho, the Runge-Kutta method turns out to be well 
defined at all the points u(t), t E Jh. The local error Eh(t) is defined by 

u(t + h) = .Ahh(U(t)) + Ch(t), t C Jh- 

Suppose we have proved an estimate of the form 

(23) 1Eh(t)jjl = 0(h!+1)j 

where the leading constant on the right hand side, though depending on u, is 
uniform in t E Jh. Let tj, 0 < j < N, be a finite sequence of time levels in J, with 
constant step-size. For 0 < n < N - 1 we have 

U(tn+ ) = JVh (U(tn)) + Eh(tn), 

tUn+1 = X<h (Un) v 

as long as the method is defined. Therefore, after a possible reduction of ho and T, 
Theorem 1.1 applied with Tn+1 := h-lEh(tn), 0 < n < N, yields the bound 

(24) |IU(tn)-Unllv = O(V), OK < n < N-1, 

which constitutes the estimate for the global error. 
Thus, it remains to prove (23). For t E Jh, set 

Uh(t) = [u(t + clh), u(t + CAh),- Iu(t + c,h)] EXv. 

Define the residuals AhO(t) E Xs and 8h(t) (cf. [20]) by means of the expressions 

u(t + h) = u(t) + hbTUh (t) + ah(t) = u(t) + hbTB (U- (t)) Uh (t) + ah (t) 

and 

Uh (t) = e 0 u(t) + hAUh (t) + Ah (t) = e 0 u(t) + hAB (Uh (t)) U- (t) + Ah (t) 

It is well known that the quadrature formula with weights b and nodes c is of order 
p. This gives II8h(t)II* = (hP+1), since u E CP+1(J,X>*). Therefore, 

116h(t)llv* = 0(h-+1). 
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Analogously, by the definition of q*, we also have 

A IjAh(t)JIV* = 0(hq+l) 

Notice that the constants in the previous two upper bounds depend on the size of 
IU(q+l)I,*, so that they are uniform in t E Jh. 

On the other hand, IIUh(t) - e 0 u(t),l < R, because of our choice of ho. Then 
we can apply Lemma 2.1 and conclude that the inverse of I - hAB (Uh (t)) exists 
as a bounded operator in XS. Hence, we get the representation 

Uh (t) = (I- hAB (Uh (t))) 1(e 08 u(t) + A\h(t)) i t E Jh- 

Let us apply the Runge-Kutta method at u(t), t E Jh. The stages Vh(t) 
ch(u(t)) are uniquely defined as the solutions of 

Vh (t) = e 0 u(t) + hAB (Vh (t)) Vh (t) 

or, by Lemma 2.2, by the expression 

Vh(t) = (I -hAB(Vh(t))) (e 0 u(t)). 

Denoting Eh(t) = Uh(t) - Vh(t), we get 

Eh (t) (I-hAB (Uh (t)) ) Ah (t) 

+ ((I - hAB(Uh(t))) - (I- hAB(Vh(t))) )(e? u(t)). 

By (10), it is clear that 

IIEh(t) II < K1 jAh(t) IV* + Kjhv *||Eh(t) I,IuU(t)II* 

Thus, by reducing ho so as to have h' -tKi max,Ej lu(s) II,* < 1/2, we deduce 
that 

(25) IIEh(t) 11 < 2K1 IAh(t)IIl>* = (hq+l). 

In the same way, we have 

Eh(t) - Ah(t) ((I- hAB (Uh (t))) I Ah (t) 

+ ( (-hAB(Uh(t))) 
- 

_(I-hAB(Vh(t)))1) (e0u(t)). 

Therefore, from (9), (10) and (25), we obtain 

IjEh(t) - Ah(t)IIv < KlhlllAh(t)ll * + KjhII Eh(t)IItju(t)II* = - (hq+l+8). 

Hence, since 

hB (Uh (t)) Uh (t) - hB (Vh (t)) Vh (t) = A (Eh (t) h (- ) 

we conclude that 

h lbT (B (Uh (t)) Uh (t) -B (Vh (t)) Vh (t)) I I= (hq+ -+,)- 

Now the error estimate (23) is readily proved, by taking norms in the expression 

Eh(t) = u(t + h) - Vh(u(t)) = hb (B (Uh (t)) Uh (t) -B (Vh (t)) Vh (t)) + 8h (t). 
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5. SOME EXTENSIONS 

First, let us comment on how to extend our results to abstract time-dependent 
quasilinear problems of the form 

(26) { u'(t) = Q(t,u(t))u(t), 
t u (to) = U0, 

where Q(t, w): X1 c X -- X is a family of linear operators, defined for t in some 
open interval J and for w E W c X. Now, along with the obvious modification of 
Hi, we require that there exist L > 0, ,ut E [0,1) and 6 E (0,1) such that W is open 
in XA and such that 

H2'. IIQ(t,w)-Q(s,v) llo <L(It-slE+ lw-vKl),fort, sE Jandv, wE W. 
The existence and uniqueness of the solution of (26) are known [3, 4, 23]. 
Lemmas 2.1 and 2.2 are easily adapted to the context of problem (26). With 

similar arguments we can prove that, for each initial condition (to, uo) E J x Xx 
with ,u < A < 1, there exist T > 0, R > 0 and a nonlinear operator .Ah: [to, to +T] x 
DA(uo, 2R/3) -- DA(uo, R) in such a way that the Runge-Kutta scheme, applied 
to (26), is given by the recurrence 

Un+Il = JVKh(tniUn), O < n < N- 1, 

as long as tN < to + T, and that U1n E DA(uo, 2R/3), 0 < n < N - 1. The proof of 
Theorem 1.1 for problem (26) remains the same, except for obvious modifications. 
The only specific detail is that the parameter p in the definition of H must be < 8. 

Second, let us consider a semilinear term in (26). Then (26) becomes 

(27) f u'(t) 
= Q(t,u(t))u(t)+f(t,u(t)), 

1t u(to)= o 

where f: J x W -- X. We keep the hypotheses H1-2, and we also suppose that 
H3. Ilf(t,w) - f(s,v)fl < L(t - sl + llw - vll,1), for t, s E J and v, w E W. 
Instead of adapting the proofs of our results to cover (27), it is better to reduce 

(27) to a problem of the form (26). To this end, we set X = R x X, X1 = R x X1, 
W = J x W, i7o = [1,uo]T E X1, and we consider the operator Q: J x X1 c 

J x X J x Wdefined by 

Q( fw [(tj w) Q(tj w)- 
I 

r]EW 

It is clear that (27) is equivalent to the time-dependent quasilinear problem 

{ 7(to) = 2 

which satisfies the standard conditions H1-2. Moreover, Runge-Kutta methods are 
compatible with this reduction. 

6. APPLICATIONS 

The abstract formulation of the standard quasilinear parabolic problems arising 
in the applications is as follows. Let Q c Rd be an open and bounded domain 
with regular boundary F, let J c R be an open interval and let A C R x Rd be 
an open domain. Assume that we are given coefficients aij: Q x J x A1 R, 
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1 < i, j < d. For w E C1(Q x J), let Q(t,w) be the second-order linear differential 
operator defined by 

d 

Q(t, w)u(x) = E aij(x, t, w(x, t), Vw(x, t)) o9ij u (x), u E , x E Q. 
i,j=l 

For [to, to + T] C J, let us consider the initial value problem 

f ut(x, t) = Q(t, u(x, t))u(x, t), to < t < to + T, x E Q, 
(28) u(x,to) = Uo(X), x E Q, 

u (x, t) = 0, to < t < to + T, x E F. 

Together with suitable hypotheses on the regularity and boundedness of the coef- 
ficients, we impose an ellipticity condition, 

d d 

Eaij (XIt2P(f I I p (xI I, ,p) E Q x J x A, t} ER 
i,j=l i=1 

for some w > 0. Take d < p < +oo. Set X = LP(Q),X1 WO'P(Q) W2,p(Q) and 
W =X=[X,X], with +d <U <1. Then X,, c C0(Q), and Q(t,w) makes 

sense as a linear operator from XI to X, even for w E W. In this way, (28) is writ- 
ten in the abstract setting of (26). The validity of H1-2 has been considered e.g. 
in [3, 23]. Thus, classical quasilinear parabolic problems (28) can be studied in the 
abstract setting of Banach spaces. The same comment applies to systems of equa- 
tions. After the previous section, an extra semilinear term f(x, t, u(x, t), Vu(x, t)) 
can be incorporated in the right hand side in (28). However, within the present 
framework, we cannot consider Neumann boundary conditions, because the conor- 
mal derivative may depend on the solution and a variable domain Dw for Q(t, w) 
may result. 

The cases p = 1, +oo are more delicate. This is due to the absence of the 
Agmon-Douglis-Nirenberg estimates. For these values of p only simple problems 
(28) have been shown to be included in the abstract framework (see [18]). 

The results of the present paper apply to semidiscretizations in time of (28), by 
means of Runge-Kutta methods. However, this is only a first step in the study of 
the discretizations of such problems. In practice, the main interest is in studying 
the discretizations in both space and time of (28). In general, we first discretize 
in space and then we apply a time-stepping method, let us say a Runge-Kutta 
method. In this way we are led to the consideration of a family of problems of the 
form 

u x (t) = QAx (UAx(t))UA\x(t), 

where Ax > 0 stands for the parameter of the spatial discretization and QAx 

XAx -- XAx, Ax > 0, are approximations to the operator Q, defined in some 
discrete spaces XAx approximating X. For the rigorous analysis of these proce- 
dures using the results of the present paper, we must ascertain whether H1-2 hold 
uniformly in Ax or, at least, with constants MAx and LAX exhibiting only weak 
singularities as Ax -- 0+. For non-Hilbert norms, these issues are far from being 
satisfactorily solved and constitute an interesting line of investigation. We mention 
that the results for finite differences in [2] seem likely to be extendable to quasi- 
linear problems, although such an extension has not been carried out. The same 
comment applies to discretizations based on finite elements (see [12, 21]). 
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7. NON-AUTONOMOUS CASE 

In this section we state several results on the semidiscretization in time of linear, 
non-autonomous parabolic problems. These results are interesting on their own, 
and are needed for the proof of the basic estimates (20) and (21) in the main 
Theorem 1.1. 

Let J C R be an interval and let A(t): XI C X -- X, t E J, be a family of 
linear, densely defined operators. Let us consider the initial value problem 

(29) f u'(t) A(t)u(t), t E J, 
l u(to) u= e Xl, toE J. 

We assume that the following two standard hypotheses [14] hold: 
NAl. There exist M > 1, wo E R and 0 E (0, 7/2) such that, for a complex 

z w wo + So and t C J, the resolvent (zI - A(t)) : X -- X exists and 

1(z- - A(t))-'11 < M - 
z - wl 

NA2. There exist L > 0 and a E (0,1] such that 

IIA(t)x - A(s)xll < Lt - sla llxll 1, xCX1, t, sE J. 

It is well known that NA1-2 guarantee the existence and uniqueness of the 
solution of the problem (29) (see e.g. [1, 19, 22, 23, 24]). 

Let u: J -- X be the solution of problem (29) and let t?, 0 < n < N, be a 
finite sequence of time levels in J, with constant step-size h > 0. The Runge-Kutta 
method given by (2) applied to problem (29) leads to the recurrence 

(30) un+1 =un+ hEZbiA(tn +cih)Un, 0< nr<N-1. 
i=1 

Here un is the approximation to u(tn), 0 < n < N, and the internal stages Un, 
0 < n < N - 1 1 < i < s, are defined by means of the system of equations 

(31) ~Un= + h E aijA(tn + cjh)Un. 
j=l 

For t E J such that t + h C J, we let B(t): Xis c XI - X' be the operator 
defined by B(t) = diag(A(t + c1h),... , A(t + c,h)). In Lemma 2.3 of [14] it is 
proved that, for h > 0 small enough, the operator I - hAB(t) : Xjs C X5 -* X 

possesses a bounded inverse (I - hAB (t)) : Xs + Xs. Thus, system (31) is 
uniquely solvable. Moreover, for 0 < n < N - 1, let r(tn+?itn) X -- X be the 
continuous linear mapping defined by 

(32) r(tn+l , tn) = I + hbTB (tn) (I - hAB (tn)) (e 0 1). 

Then the recurrence (30) can be written in concise form as Un+1 = r(tn+1,tn)Uni 
0 < n < N. 

For the convenience of the reader, we now state the stability result obtained in 
[14]: There exist a threshold h > 0, and constants K > 0, i, > 1, Q > 0 such that, 
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for 0 < h < h, O < m < n < N and 0 < < < v < 1 

n-1 

( || tI r(tj+11 tj)-_ yn11 (33) j=m 

<K e(wo+QL'/c)(tn-tm)(1 + ri;L(tn -tm)ae)lO(tn- tm- 

where -y = r(oo) . 
In the sequel, the letter K denotes a positive constant that depends only on M, 

0, wo and the Runge-Kutta method. Of course, K may take different values at 
different places. Furthermore, h, Q and i, are the constants in (33). We also set, 
for a fixed h > 0, 

Cl e(wo+QL1//)(tn-tm)(1 + L(t -tm)a)l 0 < m < n < N I > 0. 

Theorem 7.1. Assume that the parabolic problem (29) satisfies hypotheses NA1-2 
and assume that the Runge-Kutta method given by (30) and (31) is strongly A (0)- 
stable. Then there exists a constant K > 0 such that for each finite sequence of time 
levels tj, 0 < j < N, in J with constant step-size 0 < h < h and for 0 < r < V <1 

N-1 

(34) fJr(tj+, tj)-I < (K/v)CjO(tN - to) 
j=O 

Proof. Fix 0 < h < h and set T = tN - to. We begin by proving that 

(35) llr(tj+?,tj)-I v-o < K(1 + LTe)h, 0 <?j < N-1. 

Fix 0 < j <N - 1, Lemma 2.3 and (20) in [14] give 

llr(tj+i,tj) - I o-,o < 1 + llr(tj+?,tj) 1o,o < K, 

and 

jjr(tj+j,tj)-I jjo < hllbTll IIA-111 I(I-hAB(tj))-1AB(tj)jjj,o < K(1+LTa)h. 

Hence, (35) is obtained by interpolation. 
Set 

n-1 

Gn,m = flr(tj+l tj), O <Km < n < N. 
j=m 

We have 

N-1 

GN,O-I = , (r(tj+, tj) - I)Gj,o 
j=O 

N-1 N-1 

=O (r(tj+l tj)j-=) (Gj,o- yi) +=O (r(tj+l, tj)-I),yi 

j=o j=o 
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Therefore, by (33) and (35), we get 

IGN,O -Illvo 

N-1 N-1 

K E llr(tj+i, tj) - IjiojlGj,o -yi yVl-*i + E || r(tj+i, tj) -I|>+otY3 

j=O j=O 

' N-1 N-1\ 
< (1i+LTe) Kh j jGj,o 1- yjji + KhvZ E yi 

j =O j=o 
' N-1\ 

* (1 + LTe) Kh I (tj - to)v-1Cjl + Khv/(l -y) 
j=o 

< (1 + LTe) ((K/v)Cl O + K/(1 - -y)) (tN - to) 

On the other hand, by Theorem 1.1 of [14] we have 

JIGN,O - IN| ?< KCN,O 

Now (34) is proved by interpolating between the two previous estimates. 0 

In relation with the estimate (21) it is necessary to study the dependence of the 
numerical solution on the coefficients A(t), t E J. To this end, we consider another 
family A* (t): Xi C X -> X, t E J, of linear operators satisfying conditions NA1-2. 
The corresponding discrete operators defined by the Runge-Kutta method are now 
denoted by r*(t,+i,tn): X > X, O < n < N-1. 

Next we state a lemma. The first estimate (36) is readily proved by comparing 
with an integral. The second one (37) was obtained in the proof of Lemma 2.1 of 
[14]. 

Lemma 7.1. Let v E (0, 1). Then there exist constants bi(v), b2(v) > 0 such that, 
for 0 < 7r < v 

(36) 
n-1 

Z_ h(tn - tj)-(ti - tm)l < bi(V) (tn - tm)11717 0 K m < n K N, 

j=m+l 

n-1 

(37) ? h'(tn -tj) <t1-m < b2(V)(tn - tm)p-11 0 < m < n < N, 
j=m 

where tn, 0 < n < N, is a finite sequence of time levels with step-size h > 0. 

Theorem 7.2. Let A(t), A*(t): X1 C X -> X, t E J, be two families of operators. 
Assume that they satisfy hypotheses NA1-2, with the same constants, and that the 

Runge-Kutta method is strongly A(0)-stable. Then there exists K > 0 such that, 
for an arbitrary finite sequence of time levels tn, 0 < n < N, in J with step-size 
0 < h < h, and for 0 < v < 1 and 0 < q < v, 

(38) 
N-1 N-1 

|| r(tj+i, tj) - I| r*(tj?i,tj) < K(bi(v) + b2 (V)) 6C2o2(tN0 - 
j=O j=o 

where 

E = sup{ 11 A(t) - A* (t) | 1,0 : to < t < tN }- 
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Proof. Fix 0< h <h andset T= tN-to. For 0< j< N, let B*(tj) :X1s C X 
X' be the operator defined by 

B* (tj) = diag(A* (tj + cl h), A* (tj+ c2h), ... , A* (tj + c,h)). 

Notice that 

(39) 

hB(tj)(I- hAB(tj)) - hB*(tj) (I - hAB*(tj)) 

= A-1 ((I - hAB(tj)) -1 (T - hAB*(tj)) ) 

= hA-1 (I - hAB(tj)) 1A(B(tj) - B* (tj)) (I -hAB*(t ))l. 

By Lemma 2.4 of [14], there exists K > 0 such that, for a, 13 E [0,1] and for 
0 < j < N - 1, we have 

11I(T - hAB(tj)) 1IIo, < K(l + _LTce)h-fi3 
and 

(I - hAB* (tj))l 0-,J ? K(1 + LTa)h-l. 
Then, by using the identities (32) and (39) and the above estimates, we obtain 

(40) 
r(tj+1, tj)-r*(tj+1, tj) I ,3 

= h bT (B(tj) (f-hAB(tj)) - B* (tj) (1-EhAB*(tj)) )(e(9I) 

< Khl (?-hAB(tj)) Bllo, llB(tj)-B*(tj)lllo ll(I-hAB*(tj)) || 

< K(1 + LT)2Eh- 

for some suitable K > 0. 
Set, for 0 < mn < n < N, 

ri-i n-I 

Gn,m = I1 r(tj+,tj), GInm = j| r*(tj?i,tj), 

j=m j.=m 

and Frn,m = Grn,m-n-yn, Fn,m Gn,m - .n-m Then 

(41) 
N-1 

GN,O- = E GN,j+l (Gj+,j-G*+, .)G* o 
j=o 

N-1 

= NZ ( ,+?1(Gi?+,i - G*+,j)Fj*,o + FN,j+l(Gj+l,j G- 
j=o 

+ yN-(j+l)(Gj?i, - G*lJ)F*o _tyN-(i?)(Gj?1, - 

Let 71 and v as in the theorem. By (33) and (40), for 0 < 1 < j + 1 < N, we have 

FN,j+ (Gj+,,j - G*+l,j)Fj*,o 

< HIFN,j+l?llHonl r(tj+l, t3) - r*(tj?i, tj) | 
< K(1 + LTa)2C ?l tj(tN-t+1)-"(Eh)Cjlo (ti to- 

< K(1 + LTa')2CN?O(tN - tj)-Eh(tj -to)"'. 
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In a similar way, we see that 

{lIFN,j+l (Gj+l,,j e %.+l j W 

? I FNj+1o-, ||r(tj+1, tj) -r* (tj+l, tj) ll0 

? K(1 + LTc)2C0 -J+l (tN tj)-nEhv-y 

and that 

11_YN- (j+')(Gj+,, j- G*+I,j)Fj* 

< oN-(j+l) llr(tj+?, tj) -r*(tj?i, tj) Ii*??I7, 
< K(1 + LT )27N-(j+l)&hl1-?CJ (t1 - to)i- 

Finally, we have 

jjYN- (j+')(Gj+l,j - G*+l j),y)j j II < YyN-lK(l + LT )2&hv-. 

Hence, as Fj,j = Fj* -O, the above estimates in (41) yield 

||GN,O- GN,o II n 

( N-2 N-2 

< K(1 + LT)2cC0 h E (tN - tj)-(t - to)-1 + E (tN- tj)-h 
j=1 j=o 

N-1 
1 -qN 

+ E yN-(i?l)hl-O(tj - to)"'1 + (N - 1)hV ThyN . 
i==1 

Now the proof of (38) is clear, by using Lemma 7.1. 
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